APIS Bibliography

Export 1201 results:
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Van Der Heijden E, Verbeek SJ, Kuiper PJC. Elevated atmospheric CO2 and increased nitrogen deposition: effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. . Global Change Biology. 2000 :201-212.
Holmes WE, Zak DR, Pregitzer KS, King JS. Elevated CO2 and O3 alter soil nitrogen transformations beneath trembling aspen, paper birch, and sugar maple. Ecosystems. 2006 ;9:1354-1363.
Toet S, Ineson P, Peacock S, Ashmore M. Elevated ozone reduces methane emissions from peatland mesocosms. Global Change Biology. 2011 ;17(1):288-296.
Hill MO, Mountford JO, Roy DB, Bunce RGH. Ellenberg's indicator values for British plants: ECOFACT volume 2 technical annex. HMSO; 1999.
Jefferies RL. The embarrassment of riches: Atmospheric deposition of nitrogen and community and ecosystem processes. . Trends in Ecology and Evolution. 1997 ;12:74-78.
Erisman JW, Bleeker A. Emission, concentration and deposition of acidifying substances. In: Studies in Environmental Science. Studies in Environmental Science. ; 1997. pp. 21-81.
CEIP . Emissions as used in EMEP Models. Vienna, Austria: Centre on Emission Inventories and Projections.; 2010. Available from: http://www.ceip.at/
UNECE, Achermann (E)B, Bobbink (E)R. Empirical Critical Loads for Nitrogen - Expert Workshop, Berne 2002. SAEFL; 2003.
Hornung M, Bull KR, Cresser MS, Hall J, Langan SJ, Loveland PJ, Smith C. An empirical map of acidity for soils in Great Britain. Environmental Pollution. 1995 ;90:301-310.
Bobbink R, Hornung M, Roelofs JGM. Empirical nitrogen critical loads for natural and semi-natural ecosystems. Berlin: Umweltbundesamt; 1996 pp. 71-96. .
Bobbink R, Roelofs JGM. Empirical nitrogen critical loads: update since Lokeberg (1992). (Hornung M, Sutton MA, Wilson RB). Bush: Institute of Terrestrial Ecology; 1995 pp. 9-19.
Salminen J, Tan-Anh B, Van-Gestel CAM. Encyyrtraeids and microbes in Zn polluted soil: No link between organism-level stress response and ecosystem functioning. Ecotoxicology. 2001 ;(10): 351-361.
Spiers RB, Frost CA. The enhanced acidification of a field soil by very low concentrations of atmospheric ammonia. Research and Development in Agriculture . 1987 ;4:83-86.
Hartman WH, Richardson CJ, Vilgalys VR, Bruland GL. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America. 2008 ;105(46):17842-17847.
Beebee TJC. Environmental change as a cause of natterjack toad (Bufo calamita) declines in Britain. Biological Conservation. 1977 ;11:87-102.
Jenkins A. Environmental chemistry: End of acid reign? . Nature. 1999 ;401:537-538.
Gilbert OL. Environmental effects of airborne fluorides for aluminium smelting at Invergordon, Scotland 1971-1983. Environmental Pollution (Series A). 1985 ;39:293-302.
Reimer PS. Environmental effects of manganese and proposed freshwater guidelines to protect aquatic life in British Columbia. Department of Chemical & Bio-Resource Engineering, Bio-resource Engineering Program, University of British Columbia; 1999.
UNEP. Environmental effects of ozone depletion: 1998 assessment. In: UNEP. UNEP. Nairobi; 1998. Available from: http://www.gcrio.org/ozone/toc.html
WHO. Environmental Health Criteria 125 Platinum. Geneva: World Health Organisation; 1991.
WHO. Environmental Health Criteria 135 Cadmium - Environmental Aspects. Geneva: World Health Organisation; 1992.
WHO. Environmental Health Criteria 200 Copper. Geneva: World Health Organization; 1998.
WHO. Environmental Health Criteria 200 Copper. Geneva: World Health Organisation; 1998.
WHO. Environmental Health Criteria 221 Zinc. Geneva: World Health Organisation; 2001.
WHO. Environmental Health Criteria 224 Arsenic and arsenic compounds. Geneva: World Health Organization; 2001.

Pages