Woodland and hedgerows

Zinc :: all ecosystems

Key Concerns

Symptoms of zinc toxicity in plants include reduced root growth, and inhibition of various physiological processes including transpiration, respiration and photosynthesis. Stunted growth, leaf epinasty and chlorosis of younger leaves are characteristic of zinc toxicity (WHO 2001). Reduced yield, and chlorosis have been reported in various crop species, including fescues, blue grass, barley, soybean, lettuce and cyperus grown in soil with high zinc concentrations (Chaney 1993). 

Vanadium :: all ecosystems

Key Concerns

Vanadium can be toxic to plants, inducing iron-deficiency chlorosis and trace element nutrition, by reducing the levels of managanese, copper, calcium and phosphorous. These effects have been found in plants exposed either via hydroponic solutions or soil. The concentration of vanadium in soil which causes toxic effects in plants may range from 10 to 1300 mg/kg, depending on the plant species, the form of vanadium and the soil type (WHO 1988; WHO 2001).

Platinum group :: all ecosystems

Key Concerns

There is a paucity of data regarding effects of airborne platinum group metals on ecosystems. However toxic effects, including inhibited transpiration, and histopathology have been reported in plants exposed to high concentrations of either platinum or palladium salts following exposure in a nutrient solution (WHO 1991; WHO 2002). 

Manganese :: all ecosystems

Key Concerns

Symptoms of manganese toxicity to terrestrial plants vary widely between species. They include marginal chlorosis, necrotic lesions and distorted development of the leaves (Woolhouse 1983). In plants, manganese tends to accumulate in the shoots, rather than roots, resulting in symptoms occurring in the leaves (Loneragan 1988).

Copper :: all ecosystems

Key Concerns

Copper is an essential element for all biota, therefore any adverse effects must be balanced against its essentiality. This means that for all organisms, there will be range of optimal copper concentrations. Exposure to copper concentrations outwith this range, will result in adverse effects, due to either copper deficiency, or copper toxicity.

Cobalt :: terrestrial ecosystems

Key concerns

Cobalt in soil is retained by oxides, such as iron and manganese oxide, crystalline materials including aluminosilicates and goethite, and natural organic substances found in soil. In clay soils, the adsorption may be due to ion exchange at the cationic sites on clay with either simple ionic cobalt or hydroloysed ionic species such as cobalt hydroxide (ATSDR 1992).

There is a paucity of data on the effects of cobalt on species indicative of terrestrial ecosystems.

Pages

Subscribe to RSS - Woodland and hedgerows

This page was accessed on Monday, August 20, 2018 02:56